CLASS – 11th to 12th

Section – I MATHEMATICS

1.	If $\cos^2\theta + 2$, $\sin^2\theta + 2$ are roots of $3x^2 + 2bx + c = 0$ whose discriminant is Δ_1 , and $\cos^4\theta - 3$, $\sin^4\theta - 3$ are			
	roots of $9x^2 + 2bx + c = 0$ whose discriminant is Δ_2 then $\frac{\Delta_2}{\Delta_1} =$			
	(a) 3	(b) 9		
	(c) $\frac{1}{3}$	(d) $\frac{1}{9}$		
2.	Consider two positive numbers <i>a</i> , <i>b</i> . If AM of <i>a</i> , <i>b</i> exceeds their GM by $\frac{3}{2}$ and GM of <i>a</i> , <i>b</i> exceeds their HM by			
	$\frac{6}{5}$, then the value of $b^2 - a^2$ is			
	(a) 35	(b) – 35		
	(c) - 136	(d) 135		
3.	Let $S = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \dots + \sqrt{1 + \frac{1}{202^2}}$	$\frac{1}{21^2} + \frac{1}{2022^2}$, then the value of [S] is where [.] is greatest		
	integer function is			
	(a) 2019	(b) 2020		
	(c) 2021	(d) 2022		
4.	Positive numbers x, y, z satisfy $xyz = 10^{81}$ and	$(\log_{10} x)(\log_{10} yz) + (\log_{10} y)(\log_{10} z) = 468$. The value of		
	$\sqrt{(\log_{10} x)^2 + (\log_{10} y)^2 + (\log_{10} z)^2}$ is			
	(a) 75	(b) 65		
	(c) 85	(d) 55		
5.	The first four terms of an arithmetic sequence a sequence?	are $p,9,3p-q$ and $3p+q$. What is the 2022th term of the		
	(a) 7086	(b) 8089		
	(c) 9027	(d) 8888		
6.	The minimum value of $f(x) = x-1 + 2x-1 + 3 $	$3x-1 +\cdots+ 119x-1 $ is		
	(a) 35	(b) 39		
	(c) 49	(d) 55		

CLASS – 11th to 12th

7	A regular bayagan has side length 6. Congruent ares with radius 2 are drawn with the center at each of the							
7.	vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded							
	as shown What is the area of the shaded region?							
	L	\bigwedge						
	$\langle \rangle$							
	(a) $27\sqrt{3}-9\pi$	(b) $27\sqrt{3} - 6\pi$						
	(c) $54\sqrt{3} - 18\pi$	(d) $54\sqrt{3}-12\pi$						
8.	The sum of the digits in the decimal form of the n	number $10^{2022} - 2023$ is						
	(a) 18192	(b) 18172						
	(c) 18156	(d) 18213						
9.	Let $f(x) = x^3(1-x)^3$. What is the value of the sur	n						
	$f\left(\frac{1}{2023}\right) - f\left(\frac{2}{2023}\right) + f\left(\frac{3}{2023}\right) - f\left(\frac{4}{2023}\right) + \dots + f\left(\frac{2021}{2023}\right) - f\left(\frac{2022}{2023}\right)$ is							
	(a) 0	(b) 1						
	(c) $\frac{2021^3}{2023}$	(d) $\frac{2022^3}{2023}$						
10.	A college awarded 38 medals in Footballs, 15 in a of 58 men and only three men got medals in a medals in exactly two of the three sports is	Basketball and 20 to Cricket. If these medals went to a total Il the three sports. The number of students who received						
	(a) 18	(b) 15						
	(c) 9	(d) 6						
	Section – II PHYSICS							
	PHYSICS							
11.	Let the angle between two nonzero vectors \vec{A} are	nd \vec{B} be 120° and resultant be \vec{C}						
	(a) \vec{C} must be equal to $ \vec{A} - \vec{B} $	(b) \vec{C} must be less than $ \vec{A} - \vec{B} $						
	(c) \vec{C} must be greater than $ \vec{A} - \vec{B} $	(d) \vec{C} may be equal to $ \vec{A} - \vec{B} $						
12.	The vector sum of two forces is perpendicular to	their vector differences. In that case, the forces						
	(a) Are equal to each other in magnitude	(b) Are not equal to each other in magnitude						
	(c) Cannot be predicted	(d) Are equal to each other						
13.	How many minimum number of non-zero coplanar vectors having different magnitudes can be added to give zero resultant							
	(a) 2	(b) 3						
	(c) 4	(d) 5						

CLASS – 11th to 12th

21.	21. At low pressure, the Vander waal's equation is written as:				
	CHEMISTRY				
	Sec	tion – III			
	(c) 1 : 1	(d) $\cos\theta$:1			
	(a) 2 : 1	(b) 1:cosθ			
	ratio of	i of time. The heights attained by the two balls are ill the			
20.	20. A ball of mass <i>m</i> is thrown vertically upwards. Another ball of mass 2 <i>m</i> is thrown at an angle θ with the vertical Bath of them stars in sin for some period of time. The ball the stars doubt to the the stars in the s				
	(c) $\frac{v^2}{g}$	(d) $\frac{4v^2}{\sqrt{5}g}$			
	(a) $\frac{4v^2}{5g}$	(b) $\frac{4g}{5v^2}$			
19.	19. A particle is projected with a velocity v such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where g is acceleration due to gravity)				
	$(c)\frac{1}{2}s < t < 1s$	(d) $t < \frac{1}{2} s$ and $t > 1s$			
	(a) $t > 1 s$	(b) $t < \frac{1}{2}$			
18.	18. A particle starts moving rectilinearly at $t = 0$ such that its velocity as function of time is $v = t^2 - t$, where v is in ms^{-1} and t is in seconds. The time interval in which the particle decelerates is				
	(c) $t\sqrt{a^2+b^2}$	(d) $2t\sqrt{(a^2+b^2)}$			
	(a) $2t(a+b)$	(b) $2t\sqrt{(a^2-b^2)}$			
1/.	17. The coordinates of a moving particle at any time are given by $x = at^2$ and $y = bt^2$. The speed of the particl at any moment is				
17	(C) DU	(a) 40 $y = at^2$ and $y = bt^2$. The speed of the particle			
	(a) 120	(b) 80			
16.	A very large number of balls are thrown vertical ball is thrown when the previous one is at the m of ball thrown per minute is (take $g = 10 m s^{-2}$)	Iy upwards in quick succession in such a way that the next aximum height. If the maximum height is 5 <i>m</i> , the number			
	(c) 1 : 2	(d) 1 : 11			
	(a) 1 : 1	(b) 11 : 1			
15.	A body thrown vertically upwards with an initia ratio of the distances travelled by the body in th	l velocity u reaches maximum height in 6 seconds. The e first second and the seventh second is			
	(c) 4 s	(d) 16 s			
	(a) 1 s	(b) 2 s			
14.	top. How much time does it take to cover one-fourth distance starting from rest at the top (assume it us uniformly accelerating down)				
14	A body sliding on a smooth inclined plane requi	res 4 seconds to reach the bottom starting from rest at the			

RIS	RISE SCHOLARSHIP – ADMISSION TEST – SAMPLE PAPER					
	CLASS – 11 th to 12th					
	(a) $\frac{PV}{RT} = \left[1 - \frac{a}{RTV}\right]$	(b) $\frac{PV}{RT} = \left[1 - \frac{RTV}{a}\right]$				
	(c) $\frac{PV}{RT} = \left[1 + \frac{a}{RTV}\right]$	(d) $\frac{PV}{RT} = \left[1 + \frac{RTV}{a}\right]$				
22.	Aspirin has the molecular formula $C_9H_8O_4$. How	w many atoms of oxygen are there in a tablet weighing 360				
	mg?					
	(a) 1.204×10^{23}	(b) 1.08×10^{22}				
	(c) 1.204×10^{24}	(d) 4.81×10^{21}				
23.	One mol. of equimolar mixture of ferric oxalate	and ferrous oxalate is to be completed oxidized by $KMnO_4$				
	solution in acidic medium. Find the volume of 10	$^{-2}M \mathrm{KMnO}_4$ solution required for this oxidation				
	(a) 90 L	(b) 45 L				
	(c) 60 L	(d) 30 L				
24.	In which of the following processes energy is ab	sorbed?				
	(a) $Cl + e^- \rightarrow Cl^-$	(b) $0^- + e^- \rightarrow 0^{2^-}$				
	(c) $0^{2^-} - e^- \rightarrow 0^-$	(d) $Na^+ + e^- \rightarrow Na$				
25.	Aspirin contains 35.55% $\left(\frac{w}{w}\right)$ of oxygen. If each	h molecule of oxygen has four oxygen atoms, the mol. mass				
	of aspirin is					
	(a) 120u	(b) 180u				
	(c) 240u	(d) 90u				
26.	What is the volume of water mixed in 500 ml 0.5 NaOH per ml?	5 M NaOH solution so that its concentration becomes 10 mg				
	(a) 100 ml	(b) 200 ml				
	(c) 250 ml	(d) 500 ml				
27.	If 3L of 0.1 M HCl is added to 2 L of 0.5 M HCl, ca	lculate the molarity of resultant solution?				
	(a) 0.48	(b) 0.26				
	(c) 0.12	(d) 0.4				
28.	$FeS + KMnO_4 \longrightarrow Fe_2O_3 + SO_2 + MnO$ in this rea	ction the equivalent mass of FeS is				
	(a) M/8	(b) M/7				
	(c) M/6	(d) M/5				
29.	It requires 40 ml of 0.5 M Ce ⁴⁺ to titrate 10 ml of product is	1.0M Sn^{2+} to Sn^{4+} . The oxidation state of Ce in the reduction				
	(a) +2	(b) +3				
	(c) +6	(d) +1				
30.	An isostructural pair is					
	(a) XeO_3 , SO_3	(b) CF_4 , SF_4				
	(c) XeO ₃ ,NH ₃	(d) PF_5 , BrF_5				

RISE Office: Plot No 776, Flat B-4, Fourth Floor, Vignesh Sai Garden Flats, Munusamy Salai, KK Nagar, Chennai - 600078

, second

CLASS – 11th to 12th

	Se	ction – IV				
	Aptitude					
31. 4	e, 6, 9, 13 $\frac{1}{2}$, ?	•				
(a) $17\frac{1}{2}$	(b) 19				
(c) $20\frac{1}{4}$	(d) $22\frac{3}{4}$				
32.93	60, 1560, 312, 78, 26, ?					
(3	a) 4	(b) 13				
(c) 2	(d) 5				
33. N	NOS, OQV, PSY, QUB, ?					
(3	a) SWE	(b) RWE				
(c) RVE	(d) RWF				
34. X	Σ L R, Y K S, Z J T, A I U, ?					
(3	a) B H V	(b) C H V				
(c) B I V	(d) B H W				
35. –	- s t L L t s L t L - t s t -					
(3	a) L s t s L t L s	(b) LtLtstLt				
(c)LttLstLL	(d) L LL t s t L t				
36. F	ind the odd-numeral pair.					
(3	a) 8 – 27	(b) 125 – 216				
(c) 343 – 512	(d) 1009 – 1331				
37. F	ind the odd-numeral pair.					
(3	a) 72 – 45	(b) 51 – 24				
(c) 47 – 20	(d) 32 – 13				
38. F	ind the odd-numeral pair.					
(3	a) 13 – 21	(b) 19 – 27				
(c) 15 – 23	(d) 16 – 24				
39. Iı b	n a certain code language, STRING is written as he written in that code language,?	% = *4+÷ and PRAISE as ?*@4%x How will	the word GRAPES			
(3	a) ÷*@x?%	(b) ÷@*? x %				
(c) ÷*@ ?x%	(d) ÷*-?x%				
40. A	analogy find the missing the number 20 : 11 : :	102:?				
(3	a) 49	(b) 52				
(c) 61	(d) 98				

ANSWER KEY

CLASS – 11th to 12th

1. B	2. C	3. B	4. A	5. B	6. C	7. C	8. A	9. A	10. C
11. B	12. A	13. B	14. B	15. B	16. C	17. D	18. C	19. A	20. C
21. A	22. D	23. A	24. B	25. B	26. D	27. B	28. B	29. B	30. C
31. C	32. B	33. B	34. A	35. C	36. D	37. D	38. D	39. C	40. B